Wednesday, October 09, 2019

Contoh ReadData pada Google


from keras.models import Sequential
from keras.layers import Dense
import numpy

from scipy.spatial import Delaunay
import pandas as pd

def ReadData(sf):
sdir="drive/My Drive/Colab Notebooks"
sff="%s/%s"%(sdir ,sf)
print("Baca file :",sff)

df = array(pd.read_csv(sff,header=None))
df1 = pd.DataFrame(df)
return df1.values

def SaveData(sf,m):
sdir="drive/My Drive/Colab Notebooks"
sff="%s/%s"%(sdir ,sf)
print("Simpan File :",sff)
savetxt(sff, m, delimiter=',',newline='\r\n')


# load and prepare the dataset
#dataset = numpy.loadtxt("cb.csv", delimiter=",")
#X = dataset[:,0:8]
#Y = dataset[:,8]
X=numpy.array([[0,0],[0,1],[1,0],[1,1]]);
Y=numpy.array([[0],[1],[1],[0]]);

# 1. define the network





model = Sequential()
model.add(Dense(1000, input_dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))




















# 2. compile the network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# 3. fit the network
history = model.fit(X, Y, epochs=10000, batch_size=1)
#history = model.fit(X, Y, epochs=2000)
# 4. evaluate the network
loss, accuracy = model.evaluate(X, Y)
print("\nLoss: %.2f, Accuracy: %.2f%%" % (loss, accuracy*100))
# 5. make predictions
probabilities = model.predict(X)
predictions = [float(numpy.round(x)) for x in probabilities]
accuracy = numpy.mean(predictions == Y)
print("Prediction Accuracy: %.2f%%" % (accuracy*100))

No comments: