Sunday, October 20, 2019

opencv filter

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('opencv_logo.png')

kernel = np.ones((5,5),np.float32)/25
dst = cv2.filter2D(img,-1,kernel)

plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(dst),plt.title('Averaging')
plt.xticks([]), plt.yticks([])
plt.show()

Wednesday, October 09, 2019

Resources S3

dowload di sini

Contoh ReadData pada Google


from keras.models import Sequential
from keras.layers import Dense
import numpy

from scipy.spatial import Delaunay
import pandas as pd

def ReadData(sf):
sdir="drive/My Drive/Colab Notebooks"
sff="%s/%s"%(sdir ,sf)
print("Baca file :",sff)

df = array(pd.read_csv(sff,header=None))
df1 = pd.DataFrame(df)
return df1.values

def SaveData(sf,m):
sdir="drive/My Drive/Colab Notebooks"
sff="%s/%s"%(sdir ,sf)
print("Simpan File :",sff)
savetxt(sff, m, delimiter=',',newline='\r\n')


# load and prepare the dataset
#dataset = numpy.loadtxt("cb.csv", delimiter=",")
#X = dataset[:,0:8]
#Y = dataset[:,8]
X=numpy.array([[0,0],[0,1],[1,0],[1,1]]);
Y=numpy.array([[0],[1],[1],[0]]);

# 1. define the network





model = Sequential()
model.add(Dense(1000, input_dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))




















# 2. compile the network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# 3. fit the network
history = model.fit(X, Y, epochs=10000, batch_size=1)
#history = model.fit(X, Y, epochs=2000)
# 4. evaluate the network
loss, accuracy = model.evaluate(X, Y)
print("\nLoss: %.2f, Accuracy: %.2f%%" % (loss, accuracy*100))
# 5. make predictions
probabilities = model.predict(X)
predictions = [float(numpy.round(x)) for x in probabilities]
accuracy = numpy.mean(predictions == Y)
print("Prediction Accuracy: %.2f%%" % (accuracy*100))